- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- JANDALI, M. Z., EULENBERGER, G. & HAHN, H. (1978). Z. Anorg. Allg. Chem. 447, 105-118.
- KLINGEN, W. (1969). Thèse de Doctorat, Univ. Hohenheim, Stuttgart-Hohenheim, République Fédérale d'Allemagne.
- MEULENAER, J. DE & TOMPA, H. (1965). Acta Cryst. 19, 1014–1018.
- NOWACKI, W. (1969). Schweiz. Mineral. Petrogr. Mitt. 49, 109–156.
- TOFFOLI, P. & KHODADAD, P. (1980). C. R. Acad. Sci. Sér. C, 291, 275–277.
- TOFFOLI, P., KHODADAD, P. & RODIER, N. (1977). Acta Cryst. B33, 1492–1494.
- TOFFOLI, P., KHODADAD, P. & RODIER, N. (1978). Acta Cryst. B34, 3561-3564.

Acta Cryst. (1982). B38, 710-713

Structure Cristalline d'un Orthoarséniate Acide Mixte de Cuivre(II)–Argent: CuAgH₃(AsO₄)₂

PAR A. BOUDJADA, R. MASSE ET J. C. GUITEL

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 21 avril 1981, accepté le 17 septembre 1981)

Abstract

Synthetic copper(II) silver trihydrogenbis(orthoarsenate), CuAgH₃(AsO₄)₂, is monoclinic, space group $P2_1/a$, with a = 9.716 (3), b = 7.704 (3), c =9.209 (3) Å, $\beta = 103.73$ (2)° and Z = 4; V =669.62 Å³, $d_x = 4.49$ Mg m⁻³. Single-crystal diffraction data were collected with an automatic four-circle diffractometer. The structure has been solved by the Patterson method and refined by least squares with 1118 independent reflexions to a final *R* value of 3.1%. The Cu atom has a fivefold coordination in the form of a square pyramid bridged to form a Cu₂O₈ dimer. The Ag-atom coordination polyhedron is close to a trigonal Archimedean prism. A possible distribution of the hydrogen atoms is proposed.

Introduction

L'ion cuprique présente l'effet Jahn-Teller ainsi que différents types de coordination. Les études structurales des composés contenant de l'argent sont intéressantes car l'argent possède lui aussi de nombreux types de coordination. De plus, ces deux éléments ont très souvent tendance à se lier entre eux pour former des paires métalliques Ag_2^{2+} ou Cu_2^{4+} .

C'est dans cet esprit que l'étude structurale de $CuAgH_3(AsO_4)_2$ a été entreprise.

Le mode opératoire de préparation chimique est déjà décrit (Boudjada, 1982*a*).

Techniques expérimentales

Le cristal utilisé était un prisme dont les arêtes mesuraient environ 0,1 mm. 1745 réflexions indépendantes ont été mesurées sur un diffractomètre automatique Philips PW 1100 à la longueur d'onde $K\bar{a}$ de l'argent (0,5608 Å). Le domaine angulaire de mesure était compris entre 3° et 25° θ . Chaque réflexion a été mesurée à la vitesse de 0,02° s⁻¹ dans un domaine de 1,2°. Le fond continu a été mesuré durant 5 s à chaque extrémité du domaine d'intégration que nous avons exploré en balayage $2\theta - \omega$ couplés. Les deux réflexions de référence: $2\bar{42}$ et $\bar{242}$ n'ont subi aucune variation significative.

Détermination de la structure

Les corrections de Lorentz-polarisation et d'absorption ont été effectuées.

L'étude de la fonction de Patterson nous a permis de localiser les cations Cu et Ag. Par la suite des synthèses de Fourier successives nous ont révélé l'ensemble de la structure.

Quelques cycles d'affinements sur la totalité des raies nous ont conduit à un indice résiduel R = 7,6%.

Sur la base du critère $|F_o| > 3\sigma(F_o)$, 1118 réflexions indépendantes ont été conservées. En introduisant les facteurs d'agitation thermique anisotropes, nous avons effectué quelques cycles d'affinements. Les valeurs finales de $R = \sum ||F_o| - |F_c|| / \sum |F_o|$ et $R_w =$

© 1982 International Union of Crystallography

Les positions équivalentes à x,y,z

Tableau	1.	Positions atomiques et facteurs d'agitation
		thermiaue B

 $B_{i} = \frac{4}{5} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{ij} \mathbf{a}_{j}$

Гableau	2.	Distances	interatomiques	(Å)	et	angles	de
			liaison (°)				

	- eq	3 <i>— [—] r ij</i>	1.1	
	x	У	Ζ	$B_{\mathrm{\acute{e}q}}(\mathrm{\AA}^2)$
Ag	0,97033 (9)	0,7515(1)	0,22363 (8)	1,94 (2)
As(1)	0,82207 (9)	0,3032(1)	0,07017 (9)	0,80 (2)
As(2)	0,29450 (9)	0,5092 (1)	0,47073 (9)	0,76 (2)
Cu	0,4918 (1)	0,1780(1)	0,4048 (1)	1,26 (3)
O(1)	0,9224 (7)	0,1193 (9)	0,0798 (8)	1,6 (2)
O(2)	0,8782 (7)	0,4346 (9)	0,2157 (6)	1,4 (1)
O(3)	0,6559 (6)	0,2344 (8)	0,0430 (7)	1,2 (2)
O(4)	0,8461 (7)	0,4005 (8)	-0,0893 (6)	1,2 (1)
O(5)	0,3471 (7)	0,4693 (9)	0,6622 (7)	1,5 (2)
O(6)	0,3393 (7)	0,3441 (8)	0,3768 (7)	1,3 (1)
O(7)	0,1157 (6)	0,5283 (8)	0,4270 (6)	1,0 (1)
O(8)	0,3764 (6)	0,6938 (8)	0,4405 (7)	1,2 (1)

 $\left[\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2\right]^{1/2}$ avec $w = \sigma^{-2}(F_o)$ ont finalement convergé respectivement à 3,1 et 3,6%.*

Le Tableau 1 recueille les positions finales des atomes ainsi que leur facteur d'agitation thermique isotrope B_{ea} .

Description de la structure

Le Tableau 2 regroupe les distances interatomiques et angles de liaison dans les tétraèdres AsO_4 et les polyèdres de coordination de Cu et Ag.

Les Figs. 1 et 2 représent respectivement les projections de la structure sur les plans *ab* et *ac*.

(1) Les tétraèdres AsO₄

Les distances moyennes dans les deux tétraèdres indépendants sont respectivement 1,687 (4) et 1,694 (4) Å. Rappelons que la moyenne des distances As-O dans la littérature est 1,685 Å. Les moyennes des angles O-As-O dans le premier et le second tétraèdre sont respectivement 109,3 (2) et 109,5 (2)°.

(2) Le polyèdre de coordination du cuivre

Il possède une coordinence 5. Les polyèdres possibles pour une pentacoordination sont la pyramide à base carrée (PBC) et la bipyramide trigonale (BPT). Dans le Tableau 2(b), il n'existe pas d'angle OCuO voisin de 120°. De ce fait, le cuivre est inscrit dans une PBC. La base est formée par les atomes d'oxygène

(i) (ii) (iii) (iv) (v)	$ \begin{array}{r} 1 - x, \\ -\frac{1}{2} + x, \\ \frac{1}{2} - x, \\ \frac{1}{2} + x, \\ 1 - x, \end{array} $	$\begin{array}{ccc} y_{x} & 1 \\ \frac{1}{2} - y_{x} \\ \frac{1}{2} + y_{x} & 1 \\ \frac{1}{2} - y_{x} \\ 1 - y_{x} & 1 \end{array}$	- z z - z z - z	(vi) (vii) (viii) (ix) (x)	$\frac{\frac{3}{2} - x}{\frac{2}{2} - x}, \frac{1}{2} - 1$	$\begin{array}{cccc} + y, & z \\ - y, & z \\ + y, & 1 - z \\ y, & z \\ - y, & z. \end{array}$
(a) Dans	les tétraèdre	s AsO₄				
As	(1)	O(1)	O(2)	O(3)	O(4)
0(1)	1,710 (4)	112,9 (2	105.4	(2) 102	2.4 (2)
0(2)	2,812 (6)	1,664 (4) 115.8	(2) 109	9.8 (2)
0(3)	2,681 (5)	2,818 (5) <u>1,661</u>	(4) 10	9.6 (2)
0(4)	2,668 (5)	2,764 (5	2,758	(5) <u>1,7</u>	14 (4)
А	s(2)	O(5)	O(6)	0(7	') (D(8)
0(5)	1,743 (4)	110,1 (2) 107,1	(2) 10	6,2 (2)
0(6)	2,784 (6)	1,653 (4) 108,9	(2) 11	1,7 (2)
0	7)	2,764 (5)	2,724 (5	5) 1,694	(4) 11	2,7 (2)
00	8)	2,742 (5)	2,763 (6	2,812	(5) <u>1,6</u>	85 (4)
(b) Dans	le polyèdre	de cuivre				
Cu	0(2")	O(6)	O(7 ⁱⁱⁱ)	O(7")	O(8°)
O(2")	2,02	2 (4)	85,7 (2)	96,9 (2)	86,5 (2)	168,2 (2)
O(6)	2,68	7 (6) 1	,928 (4)	88.1 (2)	168,0 (2)	96,4 (2)
O(7 ⁱⁱⁱ)	3,29	0 (5) 3	3,000 (5)	2,364 (4)	83.9 (2)	94,8 (2)
O(7 ¹)	2,73	9 (5) 3	3,882 (5)	2,914 (7)	1,975 (4)	93,1 (2)
O(8°)	3,94	5 (5) 2	2,888 (6)	3,184 (5)	2,844 (5)	1,944 (4)
(c) Envir	onnement de	e l'atome d'	argent			
Ag	O(2)	O(3 ^{vi})	O(4 ^{vii})	O(5 ^{viii})	O(7 ^{ix})	O(8*)
O(2)	2,596 (4)	80.5 (1) 80.7 (1)	148.6 (1)	62,5 (1)	89.5 (1)
O(3 ^{vi})	3,278 (5)	2,474 (4	2 75.2 (1)	126.2 (1)	135,5 (1)	129,3 (1)
O(4 ^{vii})	3,409 (6)	3,144 (5) <u>2,670 (4)</u>	90.2 (1)	75,1(1)	151,9 (1)
O(5 ^{viii})	4,892 (6)	4,425 (3) 3,655 (6)	2,486 (4)	86.2 (1)	84,5 (1)
O(7 ^{ix})	2,739 (5)	4,775 (5) 3.264 (5)	3,534 (6)	2,684 (4)	77.0 (1)
O(8*)	3,535 (6)	4,423 (5) 4,939 (5)	3,301 (6)	3,184 (5)	2,421 (4)

Fig. 1. Projection de la structure de $CuAgH_3(AsO_4)$, sur le plan *ab*.

^{*} Les listes des facteurs de structure, des paramètres thermiques anisotropes et des longueurs des axes principaux des ellipsoïdes de vibration thermique et leur orientation par rapport aux axes cristallographiques ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 36405: 11 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 2. Projection de la structure de $CuAgH_3(AsO_4)_2$ selon [010].

 $O(2^{ii})$, O(6), $O(7^{iv})$ et $O(8^{v})$. La position apicale, occupée par O(7ⁱⁱⁱ), est cependant légèrement décentrée. L'atome de cuivre est également légèrement déplacé vers la position apicale d'environ 0,35 Å. De même, la base n'est pas rigoureusement plane. De plus, il a tendance à former des paires $Cu_2^{4+}O_8$ comme par exemple dans la cornétite (Fehlmann, Ghose & Finney, 1964), la pseudomalachite (Ghose, 1963), la clinoclase (Ghose, Fehlmann & Sundaralingam, 1965) où les distances Cu-Cu avoisinent 3 Å. Dans ce cas, nous avons des distances Cu-Cuⁱ de 3,239 (1) Å. Cette distance, relativement courte pour des distances métal-métal, nous permet de conclure à l'existence d'une dimère Cu₂O₈. L'arête commune est formée par les atomes d'oxygène $O(7^{iii})$ et $O(7^{iv})$.

(3) Le polyèdre de coordination de l'argent

L'argent a deux types de coordination très fréquents: 4 et 6. Dans $AgHg_2PO_4$, Masse, Guitel & Durif (1978) ont mis en évidence un autre type de coordination qui est de 2. Dans ce sel, il est hexacoordiné. Ce type de coordination entraîne deux figures possibles: l'octaèdre ou le prisme trigonal d'Archimède (PTA).

Dans un PTA régulier, le plus grand angle est de $142,9^{\circ}$, le plus petit de $74,2^{\circ}$, avec une moyenne de $102,3^{\circ}$.

Dans un octaèdre régulier, il y a deux types d'angles: 90° et 180°. Dans le cas présent, le plus grand angle OAgO est de 151,9° (proche de 142,9°); la moyenne des angles OAgO est de 99,5 (1)°. Nous basant sur ces données, on peut en déduire que le polyèdre de coordination de l'argent est vraisemblablement un PTA plutôt qu'un octaèdre (Tableau 2c). Ce type de figure est également observé dans la structure de AgH₂AsO₄ (Boudjada, 1982b). Il est aussi également intéressant de noter que Ag possède le plus grand B_{eq} malgré son poids et sa plus grande coordination. La distance moyenne Ag-O est de 2,555 (4) Å.

(4) Les protons

Il est possible, à partir des distances intertétraédriques et de l'orientation relative des ions arséniates, de localiser géométriquement les atomes d'hydrogène. Les séries de 'Fourier-différence' s'étant révélées infructueuses, nous avons opté pour cette solution.

La formule chimique requiert trois protons. Nous avons trois distances As-O plus longues: As(1)-O(1). As(1)–O(4) et As(2)–O(5). Ces trois atomes d'oxygène seraient donneurs. Les atomes d'oxygène accepteurs nous sont donnés par les trois plus courtes distances oxygène-oxygène dans des tétraèdres différents (Tableau 3a). Les angles $As-O_d-O_a$ (Tableau 3b) sont de l'ordre de grandeur de ce qui est généralement observé pour ce type de liaison, ~109° (O_a: oxygène accepteur, O_d: oxygène donneur). Partant de cette hypothèse, nous avons essayé d'affiner les positions des protons en les plaçant à mi-distance entre les oxygènes donneurs et accepteurs (Tableau 3c). La forte contribution des atomes d'argent et d'arsenic n'a pas permis d'affiner ces positions. La formule développée de ce composé pourrait donc s'écrire: $CuAg[AsO_{2}(OH)_{2}], [AsO_{3}(OH)].$

(5) Cohésion cristalline

Les cations associés Ag et Cu forment des entités finies $Ag_2Cu_2O_{14}$ (Fig. 3). Cet amas métallique admet un centre de symétrie en $\frac{1}{2}$, $0,\frac{1}{2}$ et $0,\frac{1}{2},\frac{1}{2}$. Chaque atome d'argent partage deux arêtes communes O(7)–O(8) avec Cu et O(7)–O(2) avec Cu'. Les groupements $Ag_2Cu_2O_{14}$ sont reliés par les tétraèdres AsO₄ dans les trois directions de l'espace. Cet enchaînement s'effectue

Tableau 3. Courtes distances O–O dans des sites tétraédriques différents, angles As– O_d – O_a et positions probables des protons

(a) Courtes distances O-O

$O(1) - O(3^{iv})$	2,626 (6) Å
$O(4) - O(3^{vi})$	2,608 (6)
O(5)–O(2 ^v)	2,788 (6)

(b) Angles $As - O_d - O_a$

$As(1) - O(1) - O(3^{iv})$	97,9 (2)°
$As(1) - O(4) - O(3^{vi})$	106,5 (2)
$As(2) = O(5) = O(2^{v})$	107.0(2)

(c) Positions probables des protons

x	У	z
0,039	0,191	0,062
0,845	0,568	0,066
0,235	0,516	0,723
	x 0,039 0,845 0,235	x y 0,039 0,191 0,845 0,568 0,235 0,516

Fig. 3. Représentation schématique de Cu₂Ag₂O₁₄.

par As(1) qui partage trois de ses sommets: O(3) et O(4) avec deux Ag à la même côte et O(2) avec un Cu et un Ag à une côte différente de celle des deux premiers. Pour As(2), il partage également trois de ses sommets: O(8) avec un Ag, O(7) avec le dimère de Cu et un Ag à

la même côte que le précédent, enfin O(5) avec un Ag qui serait à une côte différente de celle des deux précédents. Les liaisons hydrogène renforceraient encore plus l'édifice. Ceci confère à ce composé sa trés grande stabilité.

Conclusion

Dans le système $Ag_2O-M^{11}O-As_2O_5-H_2O$ (M^{11} : élément de transition) signalons la présence des composés $M_3^{11}AgH_2(AsO_4)_3$ avec $M^{11} = Co$ et Zn étudiés par Riffel, Zettler & Hess (1979).

Références

- BOUDJADA, A. (1982a). Z. Anorg. Allg. Chem. A paraître.
- BOUDJADA, A. (1982b). Mater. Res. Bull. A paraître.
- FEHLMANN, M., GHOSE, S. & FINNEY, J. J. (1964). J. Chem. Phys. 41(7), 1910–1916.
- GHOSE, S. (1963). Acta Cryst. 16, 124-128.
- GHOSE, S., FEHLMANN, M. & SUNDARALINGAM, M. (1965). Acta Cryst. 18, 777-787.
- MASSE, R., GUITEL, J. C. & DURIF, A. (1978). J. Solid State Chem. 23, 369-373.
- RIFFEL, H., ZETTLER, F. & HESS, H. (1979). Z. Kristallogr. 149, 143–144.

Acta Cryst. (1982). B38, 713-719

The Structure of the High-Temperature Modification of V₃O₅ at 458 K

By S.-H. Hong and S. Åsbrink

Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden

(Received 19 December 1980; accepted 24 September 1981)

Abstract

High-V₃O₅ is monoclinic, I2/c. Unit-cell dimensions at 458 K are: a = 9.846 (2), b = 5.0268 (4), c =7.009 (1) Å, $\beta = 109.536$ (15)°, V = 326.93 Å³, Z =4, $D_x = 4.730$ Mg m⁻³, μ (Mo K α , $\lambda = 0.71069$ Å) = 8.02 mm⁻¹. The structure was determined from X-ray single-crystal data collected at 458 K with a PAILRED diffractometer, equipped with a specially constructed device for non-ambient temperatures, using the gasstream technique. The number of symmetryindependent reflexions with observable intensity was 1361, and the number of observations/variables was 33. The least-squares refinement ended with R =0.0257, $R_{w} = 0.0333$. The accuracy of the structure determination is: $\sigma_{V-V} = 0.0002-0.0007$ Å, $\sigma_{V-O} =$ 0.0004–0.0008 Å and $\sigma_{O-O} = 0.0007-0.0013$ Å. High-V₃O₅, like low-V₃O₅, has a shear structure derived from the rutile structure by crystallographic shear $(1\bar{2}1)$. There is a partial separation of tri- and tetravalent vanadium in high-V₃O₅, and the tetravalent atoms strongly prefer the position *at* the shear planes. The structure is compared with that of low-V₃O₅.

Introduction

The occurrence of a phase transition above room temperature in the mixed-valency oxide V_3O_5 was discovered by Terukov & Chudnovskii (1974) in a study of the optical reflectivity and electrical conductivity of V_3O_5 as functions of temperature. They found a semiconductor-semiconductor transition between 423 and 433 K. Its existence was confirmed by